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Abstract
In different 2D semiconductor systems we study the interaction correction to
the Drude conductivity in the intermediate and ballistic regimes, where the
parameter kBT τ/h̄ changes from 0.1 to 10 (τ is momentum relaxation time).
The temperature dependence of the resistance and magnetoresistance in parallel
and perpendicular magnetic fields is analysed in terms of the recent theories of
electron–electron interactions in systems with different degree of disorder and
different character of the fluctuation potential. Generally, good agreement is
found between the experiments and the theories.

PACS numbers: 71.30.+h, 73.40.Qv

1. Introduction

The problem of the origin of the metallic behaviour of high-mobility 2D electron and hole
gases (2DEG, 2DHG) has been intensively studied in the last few years [1]. In these systems
the resistance shows an increase with increasing temperature which is in contradiction with the
scaling theory of localization. As the localization theory does not take into account electron–
electron interactions, their role has to be questioned, especially because the ratio rs of the
Coulomb energy to the Fermi energy is large in these low-density systems (rs ∼ 10).

The well-established theory [2, 3] of the interaction correction to the Drude conductivity
σ0 has considered the ‘diffusive’ regime, kBT τ/h̄ < 1, which is not applicable for high-
mobility carriers. Recently, a theory of the interaction correction in the ballistic (kBT τ/h̄ > 1)
and intermediate regimes has been developed [4]. This theory considers electron interaction
mediated by only a few impurities. It involves coherent electron backscattering from an
impurity and from the modulated density of other electrons (Friedel oscillations) caused by
this impurity with a short-range potential.

This condition of point-like scatterers is satisfied in Si MOSFET structures [5] and
very high-mobility GaAs structures with a large spacer (d ∼ 500–1000 Å) [6, 7] where
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carrier scattering is dominated by background impurities in the 2D channel. To examine the
predictions of the theory [4] we study both these systems: vicinal Si MOSFETs and p-GaAs
heterostructures with d = 500 Å .

Short-range scatterers, however, are not common in GaAs heterostructures where doping
impurities are separated from the 2D channel by a thinner spacer (d < 300 Å). In this case
the scattering potential has a long-range character [7, 8], with the correlation length equal
to the spacer thickness. Then the correction in [4] is expected to be negligible, because in
the presence of the long-range potential both the Friedel oscillation and the backscattering
are weak. However, it was shown in the latest theory [9] that applying a strong magnetic
field increases the probability of an electron returning back and thus restores the interaction
correction. To test this prediction we study a high-mobility 2DEG in an n-GaAs heterostructure
with d = 200 Å .

Our investigations of interaction effects in the three types of 2D structure cover the range
kBT τ/h̄ ∼ (0.1–10) and show good agreement with the recent theories.

2. Predictions of the new interaction theories

For the ballistic regime the interaction theory [4] gives several predictions. Firstly, the
correction has a linear temperature dependence at kBT τ/h̄ > 1:

δσxx(T ) = σ0

(
1 +

3Fσ
0

1 + Fσ
0

)
kBT

EF

(1)

where Fσ
0 is the Fermi liquid interaction parameter in the triplet channel. The coefficient in

the temperature dependence originates from two contributions: the first is due to exchange
processes (Fock) and the second is due to direct interaction (Hartree). Secondly, for a wide
range of parameter Fσ

0 the model allows the change in the sign of dρ/dT with parallel magnetic
field from positive to negative, the effect seen in recent experiments [1]. (Negative dσxx/dT

corresponds to large enough negative Fσ
0 .) A magnetic field suppresses the triplet channel

term in equation (1), resulting in a universal, positive correction to the Drude conductivity in
magnetic field, σB

0 , and hence the insulating ρ(T ):

δσ = σB
0

T

TF

at B � BS. (2)

Here BS is the field corresponding to the full spin polarization of the 2D system, BS =
2EF /g∗µB , where g∗ is the Lande g-factor, µB is the Bohr magneton and TF is the Fermi
temperature.

In the case of a long-range scattering potential, the theory [9] shows that a classically
strong magnetic field, ωcτ > 1, perpendicular to the 2D plane restores the correction δσxx(T ),
which can be detected by the parabolic negative magnetoresistance:

ρxx = 1

σ0
+

1

σ 2
0

(µ2B2)δσxx(T ). (3)

In the diffusive regime, where strong magnetic fields do not affect the correction, δσxx(T ) is
described by the theory [2], provided the effect of Zeeman splitting on interactions is negligible.
In the ballistic regime, however, δσxx(T ) found from the negative magnetoresistance in
equation (3) will be significantly weaker than that in equation (1) which is valid for a short-
range potential.
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3. Results on p-GaAs

3.1. Samples

The first set of experiments has been performed on a 2DHG in a (311)A modulation doped
GaAs/AlGaAs heterostructure with a spacer d = 500 Å and peak mobility of 6.5 ×
105 cm2 V−1 s−1. This system shows the crossover from metal to insulator at p ∼
1.5 × 1010 cm−2 [10]. The hole density p in the metallic region is varied in the range
(2.09–9.4) × 1010 cm−2 (rs = 10–17).

3.2. Effective mass of holes at low densities

In the analysis of the transport properties of low-density 2D systems, it is important to know the
density dependence of the carrier effective mass m∗ [11–13]. In the case of a 2DHG in GaAs
the value of m∗ is not well known at p < 1011 cm−2. Therefore, we have especially performed
an analysis of the temperature dependence of Shubnikov–de Haas (SdH) oscillations measured
in weak magnetic fields and extracted the value of the effective mass at different hole densities
from 2.9 × 1010 to 8.2 × 1010 cm−2 (close to the borders of the studied range of p).

A typical trace of the oscillating component of ρxx obtained after the subtraction of the
monotonic background is shown in the inset to figure 1(a) by symbols, together with the fit
(solid line) to the conventional theoretical expression for the SdH effect [14, 15]:

δρxx

ρ0
=

∑
s

4 exp

(
−2π2s

µqB

)
2π2skBT /h̄ωc

sinh(2π2skBT /h̄ωc)
cos

[
h̄π2sn

eB⊥
− πs

]
. (4)

Here ρ0 = ρxx(B = 0), ωc = eB/m∗ is the cyclotron frequency, µq is the quantum mobility
proportional to the quantum lifetime τq = m∗µq/e. As seen from the plot, the experimental
oscillations are well described by the theoretical dependence (4) where we use only the first
harmonic, s = 1. The fit is made using m∗ and µq as free parameters. (Here and in other
figures the indicated hole density p is determined from the period of SdH oscillations.)

In figure 1(a) the amplitudes of low-field oscillations �ρA
xx , taken both in minima and

maxima, are shown for different temperatures by solid symbols. We have found that all
our data �ρA

xx(B
−1) are fitted best when m∗ is close to 0.38me and µq is allowed to be

T-dependent (figures 1(a) and (b)). Taking different values of m∗ for all p gave either a worse
fit or unreasonably large µq (see dashed lines in figure 1).

It has been found that the temperature dependence of µq becomes weaker at lower
densities, close to the metal-to-insulator crossover. Thus we have found that SdH oscillations
at a low density p = 2.9 × 1010 cm−2 can be well described by the conventional approach:
assuming that µq is T-independent (see the Dingle plot in the inset to figure 1(b), where m∗

is used as the only free parameter). The value m∗ = 0.38me obtained here is in excellent
agreement with the mass obtained at higher studied densities and with the value m∗ = (0.37–
0.38)me previously reported for hole densities above 7 × 1010 cm−2 [16]. This shows that the
effective mass of the 2DHG in the low-density p-GaAs heterostructure, m∗ = (0.38±0.02)me,
is essentially independent of the hole density within the experimental accuracy. (Recent
investigation of the 2DEG in n-GaAs heterostructures [17] has also shown independence of
the effective mass of electrons down to densities as low as (1.4–3) × 1010 cm−2.)

3.3. Temperature dependence of resistivity and metallic behaviour

Figure 2(a) represents the temperature dependence of the resistivity, with the dashed box
indicating the curves we analysed. The increase of the resistivity with T can be simply due to
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Figure 1. Inset to (a): a typical trace of the SdH oscillations in ρxx(B−1) after subtraction of
the monotonic background (solid line is the fit to equation (4)). Fitting parameters of the solid
line are: m∗ = (0.39 ± 0.01)me and µq = 6.5 × 104 cm2 V−1 s−1. (a) Amplitudes of oscillations
�ρA

xx at T = 250, 300, 350 and 450 mK, for p = 8.2 × 1010 cm−2. Solid lines are the fit to
equation (4) with m∗ = (0.39 ± 0.01)me and µq = (5.4, 6.5, 7.3, 7.8 ± 0.2) × 104 cm2 V−1 s−1

for these T, respectively. (b) Similar results for p = 5.1 × 1010 cm−2. The best fit (solid lines)
achieved with m∗ = (0.37 ± 0.01)me and µq = (7.13, 7.4, 7.85 ± 0.15) × 104 cm2 V−1 s−1

for T = 210, 300, 400 mK, respectively. Dashed lines in (a) and (b) are fits to equation (4)
with slightly different masses (m∗ = 0.33me in (a), and m∗ = 0.31me in (b); µq used as a free
parameter). Inset to (b): the amplitude �ρA

xx at a low density, p = 2.9 × 1010 cm−2, at B = 0.4 T
and different temperatures. Solid line is a one-parameter fit to the temperature-dependent factor in
equation (4) with m∗ = 0.38me (µq is eliminated in this approach).

phonon scattering, which cannot be ignored even at temperatures below 1 K in GaAs structures
where piezoelectric coupling is important. In figures 2(b)–(g), the curves ρ(T ) for different
densities are plotted together with the theoretical dependence presented as ρ(T ) = ρ0 + ρph,
where ρ0 = ρ(T = 0) = σ−1

0 is the residual resistivity due to impurity scattering, obtained by
extrapolation of experimental curves to T = 0, and ρph is the result of calculations for phonon

scattering in GaAs heterostructures [18]. The latter is represented as ρph(T ) = a(T /T0)
3

1+c(T /T0)2 ,
where parameters a and c depend on the carrier density, effective mass and crystal properties,
and T0 = k−1

B

√
2m∗S2

t EF , where St is the transverse sound velocity.
One can see in figure 2(a) that at the highest p, phonon scattering (bold curve) is strong

enough to explain the experimental dependence ρ(T ). However, with decreasing density
another contribution develops, figures 2(b)–(g), which totally dominates at low T and low
densities. Figure 3(a) shows this contribution obtained by subtracting the contribution to the
resistivity of phonon scattering. The peak in ρ(T ), with a maximum at Tmax ≈ 0.3TF , is in
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Figure 2. (a) Temperature dependence of the resistivity at different hole densities near the
crossover in the sign of dρ/dT . The bold line at the bottom of the plot (p = 9.4 × 1010 cm−2)
is the calculated ρ(T ) due to phonon scattering. (b)–(g) Resistivity on the metallic side of the
crossover (symbols), together with the calculated contribution to ρ(T ) due to phonon scattering
(solid lines: with m∗ = 0.38me; dashed lines: with m∗ = 0.36me).

qualitative agreement with the expectation that after the transition to the nondegenerate state
the resistance should decrease with increasing temperature [19, 20].

In order to compare the results in the low-temperature range of ρ(T ) with equation (1),
we replot the data in figure 3(b) in the conductivity form: �σ(T ) = (ρ(T )−ρph(T ))−1 −ρ−1

0 .
The condition for the ballistic regime kBT τ/h̄ � 1 is satisfied in our structure at T > 50–
100 mK, and a linear fit of �σ(T ) gives the value of the parameter Fσ

0 , figure 3(c). (It should
be noted that the accuracy in determining m∗ (section 3.2) does not affect our results—see
dashed lines in figures 2(b)–(g) for a different value of m∗.)

3.4. Short-range scattering potential

To establish the character of the fluctuation potential in our structure we calculate the expected
momentum relaxation rate τ−1(T = 0) at different hole densities for both homogeneous
background and remote doping. To do this we use the experimental parameters of the studied
structure (the spacer thickness and doping concentration) and the expressions in [7, 21] for
τ−1 in terms of these parameters. In figure 4 we plot the result of calculations together
with the experimental values obtained from the Drude resistivity (ρ0 = m∗/e2τp) in the
metallic regime (p � 2 × 1010 cm−2). As seen in the plot, the values of τ−1(p, T = 0)

calculated for remote acceptor scattering (dashed line) are an order of magnitude smaller than
the experimental ones.
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(a)

(b)
(c)

Figure 3. (a) Impurity scattering contribution �ρ against dimensionless temperature at different p.
(For clarity, curves in (a) and (b) are offset vertically from the zero value at T = 0.) (b) The same
data as in (a) but in the conductivity form, with linear fitting. (c) Fermi liquid parameter versus
hole density. Open symbols show the result obtained from the analysis of ρ(T ) at zero magnetic
field; closed symbols show the result from the analysis of the parallel-field magnetoresistance,
figure 6(d ).
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Figure 4. Density dependence of the momentum relaxation rate. Symbols: experiment; solid line:
calculation for homogeneous background doping; and dashed line: calculation for remote doping.

The calculated result for homogeneous background doping is depicted by the solid line.
To plot it we use the density of the background impurities NB as the only adjustable parameter
and find reasonable agreement with experiment. The obtained value NB = 2 × 1013 cm−3

is close to the value expected for the wafer growth conditions: (3–5) × 1013 cm−3. This is
also close to typical values for n-type heterostructures with µ ∼ 3 × 105–107 cm2 V−1 s−1

and a comparable spacer width 300–700 Å : NB ∼ 1013–1014 cm−3 [6, 7]. Thus, one can
conclude that the dominating scattering in our system is due to background impurities with a
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(a) (b)

Figure 5. (a) Perpendicular-field magnetoresistance ρxx(B) at p = 9.4×1010 cm−2, T = 45 mK.
Inset: zoomed-in low-field region; the solid line is the fit to equation (5). (b) ρxx(B) at different
hole densities: from 9.4×1010 (top) to 1.7×1011 cm−2 (bottom). Numbers indicate the magnitude
of magnetoresistance in percentage of the zero-field resistivity.

short-range random potential. This means that the approximation of the theory [4] can indeed
be applied and our analysis in [22] is justified.

3.5. The effect of split bands on the metallic behaviour

According to [23, 24], dρ/dT > 0 in a high-density 2DHG in GaAs structures can, in
principle, be explained in terms of inelastic scattering between two subbands which are split
due to strong spin–orbit interactions. The metallic behaviour is then accompanied by positive
magnetoresistance (PMR) in a magnetic field perpendicular to the plane. According to the
experimental and theoretical studies [24] this PMR is described by

ρxx(B) = ρxx(B → ∞) +
L

1 + (B/W)2
(5)

where

ρxx(B → ∞) = R2
1S2 + R2

2S1 − 2QR1R2

(R1 + R2)2
W = S1 + S2 + 2Q

R1 + R2

L = − [R2(S1 + Q) − R1(S2 + Q)]2

(S1 + S2 + 2Q)(R1 + R2)2
.

Here Ri = 1/epi is the Hall coefficient of the ith subband. The elements S1, S2 and Q are
scattering rates, which are determined by intra- and interband scattering mechanisms (both
elastic and inelastic).

Now we investigate the relevance of this mechanism to our system. In figure 5(a) the
trace ρxx(B) is shown for the highest studied hole density p = 9.4 × 1010 cm−2, section 3.3,
where a weak PMR of a similar shape to that in [24] is observed. In the inset a zoom-in of the
lower field data is plotted as well as its fit to equation (5) using scattering rates as adjustable
parameters. It is seen that the theory describes well the experiment. The scattering rates
obtained are of the same order of magnitude as those in [24].

According to [24], the magnitude of PMR at T = 0 and the magnitude of the drop in
ρ(T ) from T ∼ 100 K to T = 0 are determined by the same interband inelastic scattering
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(a) (c)

(d)(b)

Figure 6. (a) Dependence of the resistivity on parallel magnetic field at T = 50 mK and p =
(1.43, 1.57, 1.75, 2.03, 2.26, 2.49, 2.83, 3.36) × 1010 cm−2, from top to bottom. (b) Scaled
data, with an added curve ρ(B‖) for p = 8.34 × 1010 cm−2; solid line is the result of the
model 27. Inset: dependence of the effective g-factor on the hole density, obtained from the
value of BS . (c) Temperature dependence of the conductivity at B‖ = BS for different hole
densities. Coefficient α = 0.53 is obtained for p = (2.49, 2.83) × 1010 cm−2; and α = 0.92
for p = (1.43, 1.57, 1.75) × 1010 cm−2. Inset: ρ(B‖) for p = 2.26 × 1010 cm−2, at different
temperatures: T = 0.1, 0.2, 0.3, 0.45, 0.6, 0.8 K. (d ) Magnetoconductivity against B2

‖ , at T =
0.6 K for densities p = (2.03, 2.26, 2.49, 2.83, 3.36) × 1010 cm−2.

rate. Also, according to the previous work on band splitting [23], the magnitudes of the PMR
and the rise of ρ with temperature are the same.

In figure 5(b) we show a comparative picture of PMR traces at several p in the high-
density region. The effect of band splitting seen in the PMR becomes significantly weaker
with decreasing density. Thus at p = 9.4 × 1010 cm−2 the contribution of the band-splitting
effect to the increase of resistivity with increasing temperature cannot exceed 3%. This is
negligible in comparison with the experimental resistivity increase of about 50%. At lower
p this effect becomes even weaker. This conclusion agrees with the result of [25], where the
band splitting is found to be seen only at p > 1.36 × 1011 cm−2.

3.6. Magnetoresistance in the parallel field

Let us now turn to the increase of resistance with parallel field in figure 6(a). It was shown
recently that the hump in ρ(B‖) corresponds to the magnetic field BS of full spin polarization
of the 2DHG [26]. Our analysis is based on the model [27] of the positive magnetoresistance
at T = 0, which considers the effect of a parallel field on impurity scattering. Figure 6(b)
shows ρ(B‖)/ρ(B‖ = 0) at the lowest experimental temperature as a function of dimensionless
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magnetic field B/BS , with BS found as a fitting parameter. (Its value does indeed correspond to
the position of the hump, figure 6(a).) Generally, in accordance with [27] all the data collapse
onto one curve, which is close to the theoretical dependence, apart from the region near BS

where one can expect a contribution from another mechanism [28]. Using the value of BS and
the fact that m∗ is density independent, one can obtain the effective g-factor, g∗ = 2EF /µBBS ,
whose dependence on the density is shown in the inset to figure 6(b).

The inset to figure 6(c) shows the temperature dependence of the magnetoresistance, where
one can see that B‖ drives the metallic state into the insulator. To compare this result with
the prediction given by equation (2) we analyse the temperature dependence of the resistivity
at field BS . The resulting dependences, figure 6(c), are indeed linear, and by extrapolation
to T = 0 we find the value of the Drude conductivity σB

0 , and determine the slope α of the
straight lines. Its value is close to the expected α = 1, although we find that agreement is
better for smaller p, where α increases to 0.92. This can be attributed to the fact that in a real
system the scatterers are not exactly point-like, but with decreasing density and increasing
Fermi wavelength, λF ∝ p−1/2, the approximation of short-range scatterers becomes more
applicable.

A detailed analysis of the magnetoresistance at finite temperature can be done at
small fields where the discussed interaction theory gives a simple prediction for the
magnetoconductivity �σ = σ(B‖, T ) − σ(0, T ) in the ballistic regime. (We ignore here
the contribution of the classical mechanism [27], as the experiment is now performed at
significantly higher temperatures, and the Zeeman gap essential for the T = 0 model [27] is
completely smeared.) The analytical expression [29] for weak fields, x = Ez

2kBT
� 1 + Fσ

0
(provided −0.45 � Fσ

0 � −0.25), is approximated with 2% accuracy by

�σ(B‖) = 2Fσ
0

1 + Fσ
0

σ0
T

TF

Kb

(
Ez

2T
, F σ

0

)
(6)

where Ez = g0µBB‖, g0 is the bare g-factor (without taking into account the renormalization
of the g-factor due to interactions), and Kb

(
x, F σ

0

) ≈ x2f
(
Fσ

0

)/
3, f (z) = 1 − z

1 + z

[
1
2 +

1
1 + 2z

− 2
(1 + 2z)2 + 2 ln(2(1 + z))

(1 + 2z)3

]
. In figure 6(b) we plot the magnetoconductivity at T = 0.6 K as

a function of B2
‖ for fields satisfying the above condition. We use σ0 obtained in the above

analysis at B‖ = 0. Instead of g0 we use the value of g∗ determined from the analysis of
ρ(B‖), at the lowest T. (In doing this, we assume that the experimental value g∗ represents the
bare g-factor, see section 6.) After that the only unknown parameter in the slope of �σ

(
B2

‖
)

is Fσ
0 . We extract its value and compare it in figure 3(c) with that determined earlier from

ρ(T ) at zero field, where a good agreement between the two different approaches is seen.

4. Results on n-Si MOSFETs

The vicinal samples are high-mobility n-Si MOSFETs fabricated on a surface which is tilted
from the (100) surface around the [011] direction by an angle of 9.5◦. The studied samples
have a peak mobility of 2 × 104 cm2 V−1 s−1 at T = 4.2 K. The electron density has been
varied in the range 2 × 1011–1.4 × 1012 cm−2.

The temperature dependence of the resistivity has been measured in a wide temperature
range (see figure 7(a)) . It is seen that the dependence changes with decreasing n from metallic
to insulating, although, in general, ρ(T ) has a complicated non-monotonic character. The low-
temperature results were analysed in detail in [30]. Here we concentrate only on the metallic
behaviour seen at larger densities at T > 4 K and before the transition to the nondegenerate
state at T ∼ TF (marked by a dashed line in figure 7(a)). The phonon scattering can be
neglected in this regime as in Si structures it only becomes important at T > 100 K [5].
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(a) (b)

Figure 7. (a) Temperature dependence of resistivity at different densities for the 2DEG in the
vicinal Si MOSFET. Electron concentration is changed from n = 1.85 × 1011 cm−2 to n = 12.5 ×
1011 cm−2 (bottom curve). Dashed line marks the Fermi temperature TF . (b) An example of a
linear fit of the same data in the conductivity form, for two densities. The inset shows the parameter
Fσ

0 as a function of the electron density.

Figure 7(b) shows an example of the temperature dependence in the conductivity form.
We fit the linear part of σ(T ) by the theory of interactions in the ballistic regime, using the
relation δσ (T ) = σ0

(
1 + 15Fσ

0
1+Fσ

0

)
kBT
2EF

, relevant to 2DEGs in Si with double valley degeneracy
[31]. This situation is realized at weak intervalley scattering and for a small intervalley
gap. We have performed the analysis of the linear ρ(T ) assuming that this is the case. The
obtained parameter Fσ

0 increases with decreasing density, figure 7(b) (inset), in agreement with
previous results (figure 3(c)). Strong intervalley mixing would reduce the linear T-dependence
to equation (1), which we also used to determine Fσ

0 presented in figure 8(d) and discussed
later.

5. Results on n-GaAs

To examine the prediction of interaction theory for a long-range scattering potential [9] we
have used a 2DEG in a standard modulation doped n-GaAs heterostructure with a thin spacer
d = 200 Å. The mobility changes in the range (0.42–5.5)×105 cm2 V−1 s−1 when the electron
density is increased from 0.46 × 1011 to 2 × 1011 cm−2. This allows us to vary the parameter
kBT τ/h̄ in a broad range from 0.04 to 3.8 in the studied temperature interval T = 0.2–1.2 K.

In this structure we observe parabolic negative magnetoresistance (NMR), shown in
figures 8(a) and (b) for the density n = 6.8 × 1010 cm−2, in agreement with the prediction
of interaction theory [9] for a long-range random potential (equation (3), section 2). The kF d

value varies from 1.2 to 2.2 which proves that the fluctuation potential with the correlation
length d (spacer width) is indeed long range. This is further supported by the fact that
the momentum relaxation time in these structures is much larger than the quantum lifetime
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Figure 8. Longitudinal resistivity versus magnetic field for electron density n = 6.8 × 1010 cm−2

at different temperatures: T = 0.2, 0.8, 1.2 K. (b) The same data presented as a function of B2.
(c) Interaction correction obtained for different electron densities, n = (0.46–2.0) × 1011 cm−2

(different symbols). Solid line: theoretical prediction [9] for the correction due to the exchange
interaction, shifted by −0.07e2/h. Dashed line: theory for the total correction with Fσ

0 = −0.15.
Inset: the same results presented in the logarithmic scales. (d ) The dependence of the Fermi
liquid parameter on rs for different systems. The values of Fσ

0 for the 2DEG in the vicinal Si
structures have been found using the two-valley approach (large circles) and one-valley approach,
equation (1), (small circles). The dashed box encloses the estimated values for the 2DEG in n-type
GaAs heterostructure. Solid line is the theoretical curve for small rs [4].

(τ � τq). The magnetoresistance is analysed in the range ωcτ > 1 to satisfy the condition of
the theory [9].

In figure 8(a) the NMR exhibits a sharp change in small fields caused by weak localization,
followed by a parabolic dependence. We analyse the parabolic NMR in the range of fields
well above the ‘transport’ magnetic field Btr = h̄/4Deτ ∼ 0.013 T in order to suppress weak
localization. (We have also confirmed [32] that the magnetic field is not large enough for
the development of the magnetoresistance caused by the Zeeman effect on the interaction
correction [2].)

In figure 8(b) the resistivity is plotted as a function of B2 and from the slope of the
straight line δσ ee

xx(T ) is obtained. Figure 8(c) shows the temperature dependence of δσ ee
xx

for different electron densities, where experimental points concentrate around one curve.
This curve becomes close to the interaction correction in the exchange channel [9] if one
makes a vertical shift of the theoretical dependence by �σ = −0.07e2/h (there are no
other adjustable parameters). We believe [32] that the physical origin of this additional,
temperature-independent contribution is the classical quadratic NMR [33].

It is important to emphasize that the comparison was made with the contribution from the
exchange channel only, however it is known that there is another (Hartree) term in interactions
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controlled by the parameter Fσ
0 . Comparing the total correction (exchange plus Hartree [9])

with the experiment shows that the Hartree contribution is much smaller than the exchange
contribution. It can be seen in figure 8(c) (inset) that within experimental error the magnitude
of the parameter Fσ

0 in our case cannot be larger than 0.1–0.2.
In figure 8(d) we plot the values of Fσ

0 obtained from experiments on the 2DHG in GaAs
(figure 3(c)) and the 2DEG in vicinal Si (figure 7(b), inset), as well as the recent results on the
2DEG in (100) Si MOSFETs [13, 31, 34]. All these values were obtained on systems with
point-like scattering using the theory [4]. On the same plot we indicate a possible range of Fσ

0
in our 2DEG in GaAs with long-range potential, as the experimental accuracy does not allow
us to establish the density dependence of Fσ

0 . The overall trend of Fσ
0 (rs) from large to small

rs in figure 8(d) shows that our estimation of Fσ
0 in our case is reasonable, and consistent with

other results.

6. Discussion

The comparison of the interaction parameters Fσ
0 in figure 8(d) contains an assumption that

the character of carrier–carrier scattering is the same in different structures. It also has to be
noted that the results of analysis for 2DEG in Si depend strongly on the intensity of intervalley
scattering and the relation between the valley splitting � and temperature. In [13] it was
assumed that � > kBT , while in [31, 34] the opposite assumption is made. The difference
in the assumptions can be reflected in the determined value of Fσ

0 , as different expressions
are taken in the Hartree term of the temperature dependence. If we use equation (1) for the
analysis of Si data (assuming strong intervalley scattering or very large �), the value of

∣∣Fσ
0

∣∣
will be significantly larger in magnitude and out of the general trend in figure 8(d).

It is seen in figure 6(b) (inset) that the g-factor of holes in GaAs strongly decreases with
decreasing density—a similar behaviour was recently observed for 2D electrons [17] and holes
[35] in GaAs. This does not agree with the expectation of the interaction theory, where the
renormalization of the bare g-factor should lead to an increase of g∗ (such an increase was
seen in the 2DEG in Si [12, 36]). Therefore, we assumed in section 3.6 that the observed
g∗(n) represents the bare g-factor. Recently, it was suggested in [37] that for 2DEG in GaAs
such g(n)-dependence can be caused by the effect of the parallel field on the effective mass,
due to the finite thickness of the electron channel. In the case of holes such behaviour of the
g-factor requires further investigation. The observed decrease of the g-factor can be attributed
to the complex band structure of holes in GaAs. It is expected that in a 2D hole system the
bare g-factor measured in parallel magnetic field is close to zero when k‖ approaches the
zero value. This can explain the tendency of the effective g-factor of holes to decrease with
lowering p.

It is interesting to note that in figure 3(b) one can see saturation in σ(T ) at low
temperatures. Similarly, in figure 7(b) there is a change in the sign of dσ/dT at low T.
This behaviour of the conductivity is in qualitative agreement with theory [4] where the
change of the sign of dσ/dT is expected with decreasing temperature, at the transition from
the ballistic regime to the diffusive regime. We find, however, that in the experiment the
deviation from the linear dependence σ(T ) occurs at higher temperatures than expected (e.g.,
in figure 3(b) it is seen at kBT τ/h̄ ∼ 1 instead of the expected kBT τ/h̄ ∼ 0.1). We think that
the reason for this change in σ(T ) is additional contributions appearing at lower temperatures.
In the 2DHG it is probably due to the effect of weak localization. In the case of the 2DEG
on vicinal Si the deviation is caused by the complicated low-temperature behaviour of the
conductance described in [30].
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In our experiments the character of the scattering potential in the two studied
GaAs/AlGaAs structures is different: it is short range in the 2DHG and long range in the
2DEG. If only one type of scatterers was present, one would expect that τ ∼ τq for short-range
scatterers and τ � τq for long-range scatterers. In reality both types are present, so that the
condition τ > τq is seen in both structures. This is a clear signature of the presence of a
long-range potential. In the 2DHG it is weaker because of the larger spacer in the structure, so
that the effect of short-range scattering produced by background impurities becomes visible
(figure 4). Short-range scatterers make a significant contribution to τ , as a long-range potential
does not produce the required large-angle scattering. Thus, in the case of mixed scatterers
in the 2DHG the domination in τ of short-range potential is accompanied by the condition
τ > τq rather than τ ∼ τq expected for purely short-range scatterers.

7. Conclusion

We have demonstrated that in a GaAs heterostructure with a short-range random potential
the metallic character of ρ(T ) near the metal-to-insulator transition and the positive
magnetoresistance in parallel field are caused by the hole–hole interaction in the ballistic
limit kBT τ/h̄ > 1. We have found the Fermi liquid constant Fσ

0 (p), which determines the
sign of ρ(T ). In zero magnetic field, the value of the interaction constant was obtained from
the metallic ρ(T ) of a 2DEG in vicinal Si MOSFETs, where scattering is also determined by
a short-range impurity potential.

The predictions of the interaction theory beyond the short-range approximation were
tested in a 2DEG in a GaAs heterostructure, where the electron scattering is determined by
a long-range fluctuation potential. We have observed a parabolic negative magnetoresistance
in strong magnetic field and used it to find the electron–electron interaction correction in the
intermediate and ballistic regimes.
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